(a)
We have:
3x - 9 = \ln 8 = 3 \ln 2
So:
x = \dfrac 1 3 \left(3 \ln 2 + 9\right) = \ln 2 + 3
(b)
We have:
\ln(2y + 5) - \ln(4 - y) = 2
So:
\displaystyle \ln \left(\frac {2y + 5} {4 - y}\right) = 2
So:
\dfrac {2y + 5} {4 - y} = e^2
Then:
2y + 5 = 4e^2 - e^2 y
So:
(2 + e^2)y = 4e^2 - 5
giving:
\displaystyle y = \frac {4e^2 - 5} {e^2 + 2}
1 Like