Edexel_2017_2

Edexel_2017_2

(a)
Differentiating with respect to x we have:

\displaystyle \frac x {18} + \frac {2y} {25} \frac {\mathrm dy} {\mathrm dx} = 0

so:

\displaystyle \frac {2y} {25} \frac {\mathrm dy} {\mathrm dx} = -\frac x {18}

giving:

\displaystyle \frac {\mathrm dy} {\mathrm dx} = -\left(\frac {25} {36}\right) \left(\frac x y\right)

So at the point (6 \cos \theta, 5 \sin \theta) we have:

\displaystyle \frac {\mathrm dy} {\mathrm dx} = -\left(\frac {25} {36}\right) \left(\frac {6 \cos \theta} {5 \sin \theta}\right) = -\frac {5 \cos \theta} {6 \sin \theta}

So the gradient of the normal at P is:

\displaystyle \frac {6 \sin \theta} {5 \cos \theta}

So the equation of l is:

\displaystyle y - 5 \sin \theta = \frac {6 \sin \theta} {5 \cos \theta} (x - 6 \cos \theta)

multiplying through 5 \cos \theta we have:

5y \cos \theta - 25 \cos \theta \sin \theta = 6x \sin \theta - 36 \cos \theta

Rearranging we get:

6x \sin \theta - 5y \cos \theta = 11 \sin \theta \cos \theta

(b)

At the point Q we have y = 0, so:

6x \sin \theta = 11 \sin \theta \cos \theta

Since 0 < \theta < \dfrac \pi 2 we have \sin \theta \ne 0 we have:

\displaystyle x = \frac {11 \cos \theta} 6

so:

\displaystyle Q = \left(0, \frac {11 \cos \theta} 6\right)

giving:

\displaystyle |OQ| = \frac {11 \cos \theta} 6

The perpendicular from P to x-axis is the line drawn straight down from P to the x-axis. The foot of this line is its intersection with the x-axis, so R = (6 \cos \theta, 0) meaning that |OR| = 6 \cos \theta.

So:

\displaystyle \frac {|OQ|} {|OR|} = \frac {11 \cos \theta} 6 \times \frac 1 {6 \cos \theta} = \frac {11} {36}

The eccentricity of the ellipse e satisfies:

25 = 36 (1 - e^2)

So:

\displaystyle e^2 = 1 - \frac {25} {36} = \frac {11} {36} = \frac {|OQ|} {|OR|}

as required.

1 Like

:beers: :beers: :beers: